Using Logical Data Lakes

Today, data-driven decision making is at the center of all things. The emergence of data science and machine learning has further reinforced the importance of data as the most critical commodity in today’s world. From FAAMG (the biggest five tech companies: Facebook, Amazon, Apple, Microsoft, and Google) to governments and non-profits, everyone is busy leveraging the power of data to achieve final goals. Unfortunately, this growing demand for data has exposed the inefficiency of the current systems to support the ever-growing data needs. This inefficiency is what led to the evolution of what we today know as Logical Data Lakes.

What Is a Logical Data Lake?

In simple words, a data lake is a data repository that is capable of storing any data in its original format. As opposed to traditional data sources that use the ETL (Extract, Transform, and Load) strategy, data lakes work on the ELT (Extract, Load, and Transform) strategy. This means data does not have to be first transformed and then loaded, which essentially translates into reduced time and efforts. Logical data lakes have captured the attention of millions as they do away with the need to integrate data from different data repositories. Thus, with this open access to data, companies can now begin to draw correlations between separate data entities and use this exercise to their advantage.

Primary Use Case Scenarios of Data Lakes

Logical data lakes are a relatively new concept, and thus, readers can benefit from some knowledge of how logical data lakes can be used in real-life scenarios.

To conduct Experimental Analysis of Data:

  • Logical data lakes can play an essential role in the experimental analysis of data to establish its value. Since data lakes work on the ELT strategy, they grant deftness and speed to processes during such experiments.

To store and analyze IoT Data:

  • Logical data lakes can efficiently store the Internet of Things type of data. Data lakes are capable of storing both relational as well as non-relational data. Under logical data lakes, it is not mandatory to define the structure or schema of the data stored. Moreover, logical data lakes can run analytics on IoT data and come up with ways to enhance quality and reduce operational cost.

To improve Customer Interaction:

  • Logical data lakes can methodically combine CRM data with social media analytics to give businesses an understanding of customer behavior as well as customer churn and its various causes.

To create a Data Warehouse:

  • Logical data lakes contain raw data. Data warehouses, on the other hand, store structured and filtered data. Creating a data lake is the first step in the process of data warehouse creation. A data lake may also be used to augment a data warehouse.

To support reporting and analytical function:

  • Data lakes can also be used to support the reporting and analytical function in organizations. By storing maximum data in a single repository, logical data lakes make it easier to analyze all data to come up with relevant and valuable findings.

A logical data lake is a comparatively new area of study. However, it can be said with certainty that logical data lakes will revolutionize the traditional data theories.

Related References

End Of Support For IBM InfoSphere 9.1.0

IBM Information Server (IIS)
IBM Information Server (IIS)

End of Support for IBM InfoSphere Information Server 9.1.0

IBM InfoSphere Information Server 9.1.0 will reach End of Support on 2018-09-30.  If you are still on the InfoSphere Information Server (IIS) 9.1.0, I hope you have a plan to migrate to an 11-series version soon.  InfoSphere Information Server (IIS) 11.7 would be worth considering if you don’t already own an 11-series license. InfoSphere Information Server (IIS) 11.7 will allow you to take advantage of the evolving thin client tools and other capabilities in the 2018 release pipeline without needing to perform another upgrade.

Related References

IBM Support, End of support notification: InfoSphere Information Server 9.1.0

IBM Support, Software lifecycle, InfoSphere Information Server 9.1.0

IBM Knowledge Center, Home, InfoSphere Information Server 11.7.0, IBM InfoSphere Information Server Version 11.7.0 documentation

Infosphere Information Server (IIS) – Where you can view DataStage and QualityStage Logs?

During the course of the week, the discussion happened regarding the different places where a person might read the DataStage and QualityStage logs in InfoSphere. I hadn’t really thought about it, but here are a few places that come to mind:

  • IBM InfoSphere DataStage and QualityStage Operations Console
  • IBM InfoSphere DataStage and QualityStage Director client
  • IBM InfoSphere DataStage and QualityStage Designer client by pressing Ctrl+L

Printable PDF Version of this Article

Related Reference

IBM Knowledge Center> InfoSphere Information Server 11.7.0 > InfoSphere DataStage and QualityStage > Monitoring jobs

IBM Knowledge Center > InfoSphere Information Server 11.7.0 > Installing > Troubleshooting software installation > Log files

Essbase Connector Error – Client Commands are Currently Not Being Accepted

DataStage Essbase Connector, Essbase Connector Error, Client Commands are Currently Not Being Accepted
DataStage Essbase Connector

While investigating a recent Infosphere Information Server (IIS), Datastage, Essbase Connect error I found the explanations of the probable causes of the error not to be terribly meaningful.  So, now that I have run our error to ground, I thought it might be nice to jot down a quick note of the potential cause of the ‘Client Commands are Currently Not Being Accepted’ error, which I gleaned from the process.

Error Message Id

  • IIS-CONN-ESSBASE-01010

Error Message

An error occurred while processing the request on the server. The error information is 1051544 (message on contacting or from application:[<<DateTimeStamp>>]Local////3544/Error(1013204) Client Commands are Currently Not Being Accepted.

Possible Causes of The Error

This Error is a problem with access to the Essbase object or accessing the security within the Essbase Object.  This can be a result of multiple issues, such as:

  • Object doesn’t exist – The Essbase object didn’t exist in the location specified,
  • Communications – the location is unavailable or cannot be reached,
  • Path Security – Security gets in the way to access the Essbase object location
  • Essbase Security – Security within the Essbase object does not support the user or filter being submitted. Also, the Essbase object security may be corrupted or incomplete.
  • Essbase Object Structure –  the Essbase object was not properly structured to support the filter or the Essbase filter is malformed for the current structure.

Related References

IBM Knowledge Center, InfoSphere Information Server 11.7.0, Connecting to data sources, Enterprise applications, IBM InfoSphere Information Server Pack for Hyperion Essbase

Printable PDF Version of This Article

 

What Are The DataStage / QualityStage Join Stages?

Three Stages Which Join Records
Three Stages Which Join Records

While chasing an error to which only applied to join type stages, I thought it might be nice to identify what the InfoSphere Information Server DataStage / QualityStage are.  There are three of them, as you can see from the picture above, which are the:

  • Join Stage,
  • Lookup Stage,
  • And, Merge Stage.

All three stages that join data based on the values of identified key columns.

Related References

IBM Knowledge Center, InfoSphere Information Server 11.7.0, InfoSphere DataStage and QualityStage, Developing parallel jobs, Processing Data, Lookup Stage

IBM Knowledge Center, InfoSphere Information Server 11.7.0, InfoSphere DataStage and QualityStage, Developing parallel jobs, Processing Data, Join Stage

IBM Knowledge Center, InfoSphere Information Server 11.7.0, InfoSphere DataStage and QualityStage, Developing parallel jobs, Processing Data, Merge Stage

https://www.ibm.com/support/knowledgecenter/SSZJPZ_11.7.0/com.ibm.swg.im.iis.ds.parjob.dev.doc/topics/c_deeref_Merge_Stage.html

Parallel jobs on Windows fail with APT_IOPort::readBlkVirt;error

APT_IOPort::readBlkVirt Error Screenshot
APT_IOPort::readBlkVirt Error Screenshot

This a known error for windows systems and applies to DataStage and DataQuality jobs using the any or all the three join type stages (Join, Merge, and Lookup).

Error Message

  • <<Link name>>,0: APT_IOPort::readBlkVirt: read for block header, partition 0, [fd 4], returned -1 with errno 10,054 (Unknown error)

Message ID

  • IIS-DSEE-TFIO-00223

Applies To

  • Windows systems only
  • Parallel Engine Jobs the three join type stages (Join, Merge, and Lookup). It does not apply to Server Engine jobs.
  • Infosphere Information Server (IIS), Datastage and DataQuality 9.1 and higher

The Fix

  • Add the APT_NO_IOCOMM_OPTIMIZATION in project administrator and set to blank or 0. I left it blank so it would not impact other jobs
  • Add the environment variable to the job producing the error and set to 1

What it APT_NO_IOCOMM_OPTIMIZATION Does

  • Sets the use of shared memory as the transport type, rather than using the default sockets transport type.
  • Note that in most cases sockets transport type is faster, so, you likely will not to set this across the project as the default for all job. It is best to apply it as necessary for problematic jobs.

Related References

InfoSphere DataStage and QualityStage, Version 9.1 Job Compatibility

IBM Support, JR54078: PARALLEL JOBS ON WINDOWS FAIL WITH APT_IOPORT::READBLKVIRT; ERROR

IBM Support, Information Server DataStage job fails with unknown error 10,054.

 

DataStage – How to Pass the Invocation ID from one Sequence to another

DataStage Invocation ID Passing Pattern Overview
DataStage Invocation ID Passing Pattern Overview

When you are controlling a chain of sequences in the job stream and taking advantage of reusable (multiple instances) jobs it is useful to be able to pass the Invocation ID from the master controlling sequence and have it passed down and assigned to the job run.  This can easily be done with needing to manual enter the values in each of the sequences, by leveraging the DSJobInvocationId variable.  For this to work:

  • The job must have ‘Allow Multiple Instance’ enabled
  • The Invocation Id must be provided in the Parent sequence must have the Invocation Name entered
  • The receiving child sequence will have the invocation variable entered
  • At runtime, a DataStage invocation id instance of the multi-instance job will generate with its own logs.

Variable Name

  • DSJobInvocationId

Note

This approach allows for the reuse of job and the assignment of meaningful instance extension names, which are managed for a single point of entry in the object tree.

Related References: 

IBM Knowledge Center > InfoSphere Information Server 11.5.0

InfoSphere DataStage and QualityStage > Designing DataStage and QualityStage jobs > Building sequence jobs > Sequence job activities > Job Activity properties