Denodo Data Catalog Roles

The denodo catalog provides the data governance and self-service capabilities to supplement the denodo Virtual DataPort (VDP) core capabilities. Six roles provide the ability to assign or deny capabilities with the denodo data catalog and supplement the database, row, and column security and permissions of denodo Virtual DataPort (VDP).

The Tasks The Roles Can PerformDenodo Data Catalog Role Name
Assign categories, tags and custom properties groups to views and web services.data_catalog_classifier
Edit views, web services, and databases. Create, edit and delete tags, categories, custom properties groups, and custom properties.data_catalog_editor
Can do the same as a user with the roles “data_catalog_editor” and “data_catalog_classifier”.data_catalog_manager
Configure personalization options and content search.data_catalog_content_admin
This role can perform any action of all the other data catalog roles.data_catalog_admin
The exporter role can export the results of a query from the Denodo Data Catalog.data_catalog_exporter
denodo Virtualization
denodo Virtualization

Related References

denodo > User Manuals > Denodo Platform New Features Guide

denodo > User Manuals > Data Catalog Guide > Administration

Denodo Model Best Practices For Creation of Associations

What Are Denodo Associations?

In denodo associations follow the same concept as modeling tools, which can be described as an ‘on-demand join.’

Where Should Associations Be Created In the Denodo Model?

You don’t necessarily need to define an Association at every level; usually, the best practice is to apply associations at the following points:

  • On final views published for data consumers, indicating relationships between related views; Especially, on published web services.
  • On the component views below, any derived view that brings together disparate (dissimilar) data sources.  The associations should be defined as Referential Constraints whenever appropriate to aid the optimization engine.
  • On the component views below, any derived view that joins a “Base View from Query” with standard views, since Base Views from Query cannot be rewritten by the denodo optimization engine.  Often Base Views from Query create performance bottlenecks.

These best practices should cover the majority scenarios; beyond these guidelines, it is best to take an ad-hoc approach to create Associations when you see a specific performance/optimization.

Why Are Associations important in Denodo?

In a nutshell, associations performance and the efficiency of the denodo execution optimizer along with other model metadata, such as:  

  • The SQL of the view(s)
  • Table metadata (Table Keys {PK, FK), Virtual Partitions…etc.)
  • Data statistics, which are used by the Cost Based Optimizer (CBO)

Related References

Associations in Denodo

Importing Associations And Joins From A Database Schema in Denodo

A coworker recently asked a question as to whether denodo generated joins automatically from source RDBMS database schema.  After searching, a few snippets of information became obvious.  First, that the subject of inheriting join properties was broader than joins and needed to in modeling associations (joins on demand). Second, that there were some denodo design best practices to be considered to optimize associations.

Does Denodo Automatically Generate Joins From the Source System?

After some research, the short answer is no.

Can Denodo Inherit Accusations From A Logical Model?

The short answer is yes. 

Denodo bridges allow models to be passed to and from other modeling tools, it is possible to have the association build automatically, using the top-down approach design approach and importing a model, at the Interface View level, which is the topmost level of the top-down design process. 

However, below the Interface view level, associations and or joins are created manually by the developer.

Where Should Associations Be Created?

You don’t necessarily need to define an Association at every level, usually, the best practice is to apply associations at following points:

These best practices should cover the majority scenarios, beyond these guidelines it is best to take an ad-hoc approach to create Associations when you see a specific performance/optimization.

Related References

Associations in Denodo

denodo SQL Type Mapping

denodo 7.0 saves some manual coding when building the ‘Base Views’ by performing some initial data type conversions from ANSI SQL type to denodo Virtual DataPort data types. So, where is a quick reference mapping to show to what the denodo Virtual DataPort Data Type mappings are:

ANSI SQL types To Virtual DataPort Data types Mapping

ANSI SQL TypeVirtual DataPort Type
BIT (n)blob
BIT VARYING (n)blob
BOOLboolean
BYTEAblob
CHAR (n)text
CHARACTER (n)text
CHARACTER VARYING (n)text
DATElocaldate
DECIMALdouble
DECIMAL (n)double
DECIMAL (n, m)double
DOUBLE PRECISIONdouble
FLOATfloat
FLOAT4float
FLOAT8double
INT2int
INT4int
INT8long
INTEGERint
NCHAR (n)text
NUMERICdouble
NUMERIC (n)double
NUMERIC (n, m)double
NVARCHAR (n)text
REALfloat
SMALLINTint
TEXTtext
TIMESTAMPtimestamp
TIMESTAMP WITH TIME ZONEtimestamptz
TIMESTAMPTZtimestamptz
TIMEtime
TIMETZtime
VARBITblob
VARCHARtext
VARCHAR ( MAX )text
VARCHAR (n)text

ANSI SQL Type Conversion Notes

  • The function CAST truncates the output when converting a value to a text, when these two conditions are met:
  1. You specify a SQL type with a length for the target data type. E.g. VARCHAR(20).
  2. And, this length is lower than the length of the input value.
  • When casting a boolean to an integertrue is mapped to 1 and false to 0.

Related References

denodo 7.0 Type Conversion Functions

Netezza / PureData – How To Get A List Of When A Store Procedure Was Last Changed Or Created

Netezza / Puredata - SQL (Structured Query Language)
Netezza / Puredata – SQL (Structured Query Language)

In the continuing journey to track down impacted objects and to determine when the code in a database was last changed or added, here is another quick SQL, which can be used in Aginity Workbench for Netezza to retrieve a list of when Store Procedures were last updated or were created.

SQL List of When A Stored Procedure was Last Changed or Created

select t.database — Database
, t.OWNER — Object Owner
, t.PROCEDURE — Procedure Name
, o.objmodified — The Last Modified Datetime
, o.objcreated — Created Datetime

from _V_OBJECT o
, _v_procedure t
where
o.objid = t.objid
and t.DATABASE = ‘<<Database Name>>
order by o.objmodified Desc, o.objcreated Desc;

 

Related References

 

Netezza / PureData – How To Get a SQL List of When View Was Last Changed or Created

Netezza / PureData SQL (Structured Query Language)
Netezza / PureData SQL (Structured Query Language)

Sometimes it is handy to be able to get a quick list of when a view was changed last.  It could be for any number of reason, but sometimes folks just lose track of when a view was last updated or even need to verify that it hadn’t been changed recently.  So here is a quick SQL, which can be dropped in Aginity Workbench for Netezza to create a list of when a view was created or was update dated last.  Update the Database name in the SQL and run it.

SQL List of When A view was Last Changed or Created

select t.database — Database
, t.OWNER — Object Owner
, t.VIEWNAME — View Name
, o.objmodified — The Last Modified Datetime
, o.objcreated — Created Datetime

from _V_OBJECT o
,_V_VIEW_XDB t
where
o.objid = t.objid
and DATABASE = ‘<<Database Name>>
order by o.objcreated Desc, o.objmodified Desc;

Related References

 

Netezza / PureData – Table Describe SQL

Netezza Puredata Table Describe SQL
Netezza / Puredata Table Describe SQL

If you want to describe a PureData / Netezza table in SQL, it can be done, but Netezza doesn’t have a describe command.  Here is a quick SQL, which will give the basic structure of a table or a view.  Honestly, if you have Aginity Generating the DDL is fast and more informative, at least to me.  If you have permissions to access NZSQL you can also use the slash commands (e.g. \d).

Example Netezza Table Describe SQL

select  name as Table_name,

owner as Table_Owner,

Createdate as Table_Created_Date,

type as Table_Type,

Database as Database_Name,

schema as Database_Schema,

attnum as Field_Order,

attname as Field_Name,

format_type as Field_Type,

attnotnull as Field_Not_Null_Indicator,

attlen as Field_Length

from _v_relation_column

where

name='<<Table Name Here>>’

Order by attnum;

 

Related References

IBM Knowledge Center, PureData System for Analytics, Version 7.2.1

IBM Netezza database user documentation, Command-line options for nzsql, Internal slash options

IBM Knowledge Center, PureData System for Analytics, Version 7.2.1

IBM Netezza getting started tips, About the Netezza data warehouse appliance, Commands and queries, Basic Netezza SQL information, Commonly used nzsql internal slash commands

IBM Knowledge Center, PureData System for Analytics, Version 7.2.1

IBM Netezza database user documentation, Netezza SQL introduction, The nzsql command options, Slash options