DataStage – Timestamp from date

This is one of those data type conversions which I occasionally have to do in DataStage, but can never seem to remember. So, I thought I would write this quick post to document  the data type conversion code, which is really easy, once I finally remember how to do it again. 

The TimestampFromDateTime  Function

I use the TimestampFromDateTime function to do this data type conversion. I’m sure there are other ways to achieve the result, but I find this method clean and easy to perform. The TimestampFromDateTimefunction is in the Functions > Date & Time menu.

To populate the function, you need only add your date field on use ’00:00:00’ as your time element


TimestampFromDateTime Function Format


TimestampFromDateTime(%date%,%time%)


TimestampFromDateTime with Time Element example

TimestampFromDateTime(<<Date Field Here>>, ’00:00:00′)

Example transformer code With Date Field

TimestampFromDateTime(Lnk_10.POSTED_DATE, ’00:00:00′)

Related References

DataStage – Netezza Connector Action Column

Over the years have occasionally use the action column feature, however, the last month or so I have found myself using it quite a lot. This is especially true in relation to the tea set and not just in relation to the change capture stage.

The first thing you need to know is, if you want to prevent getting the ‘no action column found’ notice on the target stage, need to ensure that the action column has been coded to be a single character field char (1). Otherwise, the Netezza connector stage will not recognize your field as an action column.

While most developers will commonly work with the action column feature in relation to the change capture stage, it can also be very useful if you have created a field from one or more inputs to tell you what behavior the row requires. I have found that this approach can be very useful and efficient under the right circumstances.

Example Pattern for Action Column Using Multiple Source Selects
Example Pattern for Action Column Using Multiple Source Selects

Action column configuration example

Action Column Field Type
Action Column Field Type

 Change Code Values Mapping To Action Column

  • Here’s a quick reference table to provide the interpretation of the change type code to the actual one character action column value to which it will need to be interpreted.

Change Code Type

Change Type Code

Action Column Value

Copy (Data Without Changes)

0

No
value for this Change Type

Insert

1

I

Delete

2

D

Update

3

U

Example Transformer Stage, Derivation

  •  Here is a quick transformer stage derivation coding example to take advantage of the action call capabilities. If you haven’t already handled the removal of the copy rows, you may also want to add a constraint.
  • The combination I most frequently find myself using is the insert and update combination.
if Lnk_Out_To_Tfm.change_code=1 then ‘I’

Else if Lnk_Out_To_Tfm.change_code=2 then ‘D’

Else if Lnk_Out_To_Tfm.change_code=3 then ‘U’

Related References

Home > InfoSphere Information Server 11.7.0 > InfoSphere DataStage and QualityStage > Developing parallel jobs > Introduction to InfoSphere DataStage Balanced Optimization > Job design considerations  > Specific considerations for the Netezza connector

Infosphere Information Server (IIS) – Where you can view DataStage and QualityStage Logs?

During the course of the week, the discussion happened regarding the different places where a person might read the DataStage and QualityStage logs in InfoSphere. I hadn’t really thought about it, but here are a few places that come to mind:

  • IBM InfoSphere DataStage and QualityStage Operations Console
  • IBM InfoSphere DataStage and QualityStage Director client
  • IBM InfoSphere DataStage and QualityStage Designer client by pressing Ctrl+L

Printable PDF Version of this Article

Related Reference

IBM Knowledge Center> InfoSphere Information Server 11.7.0 > InfoSphere DataStage and QualityStage > Monitoring jobs

IBM Knowledge Center > InfoSphere Information Server 11.7.0 > Installing > Troubleshooting software installation > Log files

SFDC – Using a timestamp literal in a where clause

Salesforce Connector
Salesforce Connector

Working with timestamp literals in the Infosphere SFDC Connector soql is much like working date literals.  So, here a quick example which may save you some time.

SOQL Timestamp String Literals Where Clause Rules

Basically, the timestamp pattern is straight forward and like the process for dates, but there are some differences. The basic rules are for a soql where clause:

  • No quotes
  • No functions
  • No Casting function, or casting for the where soql where clause to read it
  • It only applies to datetime fields
  • A Timestamp identifier ‘T’
  • And the ISO 1806 time notations

Example SOQL Timestamp String Literals

So, here are a couple of timestamp string literal examples in SQL:

  • 1901-01-01T00:00:00-00:00
  • 2016-01-31T00:00:00-00:00
  • 9999-10-31T00:00:00-00:00

Example SQL with Timestamp String Literal Where Clause

 

Select e.Id,

e.AccountId,

e.StartDateTime

From Event e

WHERE e.StartDateTime > 2014-10-31T00:00:00-00:00

 

Related References

Salesforce Developer Documentation

Home, Developer Documentation, Force.com SOQL and SOSL Reference

https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_dateformats.htm

Salesforce Workbench

Home, Technical Library, Workbench

W3C

Date Time Formats

 

SFDC – Using a date literal in a where clause

Salesforce Connector

I found working with date literal, when working with the Infosphere SFDC Connector soql, to be counterintuitive for me.  At least as I, normally, as I use SQL.  I spent a little time running trials in Workbench, before I finally locked on to the ‘where clause’ criteria data pattern.  So, here a quick example.

SOQL DATE String Literals Where Clause Rules

Basically, the date pattern is straight forward. The basic rules are for a soql where clause:

  • No quotes
  • No functions
  • No Casting function, or casting for the where soql where clause to read.

Example SOQL DATE String Literals

So, here are a couple of date string literal examples in SQL:

  • 1901-01-01
  • 2016-01-31
  • 9999-10-31

Example SQL with Date String Literal Where Clause

 

Select

t.id,

t.Name,

t.Target_Date__c,

t.User_Active__c

From Target_and_Segmentation__c t

where t.Target_Date__c > 2014-10-31

 

Related References

Salesforce Developer Documentation

Home, Developer Documentation, Force.com SOQL and SOSL Reference

https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_dateformats.htm

Salesforce Workbench

Home, Technical Library, Workbench

 

What is the convert function in Datastage?

Algorithm
Algorithm

 

What is the convert function in Datastage?

In its simplest form, the convert function in Infosphere DataStage is a string replacement operation.  Convert can be used to replace a specific character, a list of characters, or a unicode character (e.g. thumbs Up Sign or Grinning Face).

Convert Syntax

convert(‘<<Value to be replaced’,'<<Replacement value >>’,<<Input field>>)

Using the Convert Function to remove a list of Characters

Special Characters in DataStage Handles/converts special characters in a transformer stage, which can cause issues in XML processing and certain databases.

Convert a list of General Characters

Convert(“;:?\+&,*`#’$()|^~@{}[]%!”,”, TrimLeadingTrailing(Lnk_In.Description))

Convert Decimal and Double Quotes

Convert(‘ ” . ‘,”, Lnk_In.Description)

Convert Char(0)

This example replaces Char(0) with nothing essentially removing it as padding and/or space.

convert(char(0),”,Lnk_In.Description)

 

Related References

String functions

InfoSphere Information Server, InfoSphere Information Server 11.5.0, InfoSphere DataStage and QualityStage, Developing parallel jobs, Parallel transform functions, String functions

Data Modeling – Fact Table Effective Practices

Database Table
Database Table

Here are a few guidelines for modeling and designing fact tables.

Fact Table Effective Practices

  • The table naming convention should identify it as a fact table. For example:
    • Suffix Pattern:
      • <<TableName>>_Fact
      • <<TableName>>_F
    • Prefix Pattern:
      • FACT_<TableName>>
      • F_<TableName>>
    • Must contain a temporal dimension surrogate key (e.g. date dimension)
    • Measures should be nullable – this has an impact on aggregate functions (SUM, COUNT, MIN, MAX, and AVG, etc.)
    • Dimension Surrogate keys (srky) should have a foreign key (FK) constraint
    • Do not place the dimension processing in the fact jobs

Related References