Denodo Model Best Practices For Creation of Associations

What Are Denodo Associations?

In denodo associations follow the same concept as modeling tools, which can be described as an ‘on-demand join.’

Where Should Associations Be Created In the Denodo Model?

You don’t necessarily need to define an Association at every level; usually, the best practice is to apply associations at the following points:

  • On final views published for data consumers, indicating relationships between related views; Especially, on published web services.
  • On the component views below, any derived view that brings together disparate (dissimilar) data sources.  The associations should be defined as Referential Constraints whenever appropriate to aid the optimization engine.
  • On the component views below, any derived view that joins a “Base View from Query” with standard views, since Base Views from Query cannot be rewritten by the denodo optimization engine.  Often Base Views from Query create performance bottlenecks.

These best practices should cover the majority scenarios; beyond these guidelines, it is best to take an ad-hoc approach to create Associations when you see a specific performance/optimization.

Why Are Associations important in Denodo?

In a nutshell, associations performance and the efficiency of the denodo execution optimizer along with other model metadata, such as:  

  • The SQL of the view(s)
  • Table metadata (Table Keys {PK, FK), Virtual Partitions…etc.)
  • Data statistics, which are used by the Cost Based Optimizer (CBO)

Related References

Associations in Denodo

Importing Associations And Joins From A Database Schema in Denodo

A coworker recently asked a question as to whether denodo generated joins automatically from source RDBMS database schema.  After searching, a few snippets of information became obvious.  First, that the subject of inheriting join properties was broader than joins and needed to in modeling associations (joins on demand). Second, that there were some denodo design best practices to be considered to optimize associations.

Does Denodo Automatically Generate Joins From the Source System?

After some research, the short answer is no.

Can Denodo Inherit Accusations From A Logical Model?

The short answer is yes. 

Denodo bridges allow models to be passed to and from other modeling tools, it is possible to have the association build automatically, using the top-down approach design approach and importing a model, at the Interface View level, which is the topmost level of the top-down design process. 

However, below the Interface view level, associations and or joins are created manually by the developer.

Where Should Associations Be Created?

You don’t necessarily need to define an Association at every level, usually, the best practice is to apply associations at following points:

These best practices should cover the majority scenarios, beyond these guidelines it is best to take an ad-hoc approach to create Associations when you see a specific performance/optimization.

Related References

Associations in Denodo

denodo SQL Type Mapping

denodo 7.0 saves some manual coding when building the ‘Base Views’ by performing some initial data type conversions from ANSI SQL type to denodo Virtual DataPort data types. So, where is a quick reference mapping to show to what the denodo Virtual DataPort Data Type mappings are:

ANSI SQL types To Virtual DataPort Data types Mapping

ANSI SQL TypeVirtual DataPort Type
BIT (n)blob
BIT VARYING (n)blob
BOOLboolean
BYTEAblob
CHAR (n)text
CHARACTER (n)text
CHARACTER VARYING (n)text
DATElocaldate
DECIMALdouble
DECIMAL (n)double
DECIMAL (n, m)double
DOUBLE PRECISIONdouble
FLOATfloat
FLOAT4float
FLOAT8double
INT2int
INT4int
INT8long
INTEGERint
NCHAR (n)text
NUMERICdouble
NUMERIC (n)double
NUMERIC (n, m)double
NVARCHAR (n)text
REALfloat
SMALLINTint
TEXTtext
TIMESTAMPtimestamp
TIMESTAMP WITH TIME ZONEtimestamptz
TIMESTAMPTZtimestamptz
TIMEtime
TIMETZtime
VARBITblob
VARCHARtext
VARCHAR ( MAX )text
VARCHAR (n)text

ANSI SQL Type Conversion Notes

  • The function CAST truncates the output when converting a value to a text, when these two conditions are met:
  1. You specify a SQL type with a length for the target data type. E.g. VARCHAR(20).
  2. And, this length is lower than the length of the input value.
  • When casting a boolean to an integertrue is mapped to 1 and false to 0.

Related References

denodo 7.0 Type Conversion Functions

Netezza / PureData – How To Get A List Of When A Store Procedure Was Last Changed Or Created

Netezza / Puredata - SQL (Structured Query Language)
Netezza / Puredata – SQL (Structured Query Language)

In the continuing journey to track down impacted objects and to determine when the code in a database was last changed or added, here is another quick SQL, which can be used in Aginity Workbench for Netezza to retrieve a list of when Store Procedures were last updated or were created.

SQL List of When A Stored Procedure was Last Changed or Created

select t.database — Database
, t.OWNER — Object Owner
, t.PROCEDURE — Procedure Name
, o.objmodified — The Last Modified Datetime
, o.objcreated — Created Datetime

from _V_OBJECT o
, _v_procedure t
where
o.objid = t.objid
and t.DATABASE = ‘<<Database Name>>
order by o.objmodified Desc, o.objcreated Desc;

 

Related References

 

Netezza / PureData – How To Get a SQL List of When View Was Last Changed or Created

Netezza / PureData SQL (Structured Query Language)
Netezza / PureData SQL (Structured Query Language)

Sometimes it is handy to be able to get a quick list of when a view was changed last.  It could be for any number of reason, but sometimes folks just lose track of when a view was last updated or even need to verify that it hadn’t been changed recently.  So here is a quick SQL, which can be dropped in Aginity Workbench for Netezza to create a list of when a view was created or was update dated last.  Update the Database name in the SQL and run it.

SQL List of When A view was Last Changed or Created

select t.database — Database
, t.OWNER — Object Owner
, t.VIEWNAME — View Name
, o.objmodified — The Last Modified Datetime
, o.objcreated — Created Datetime

from _V_OBJECT o
,_V_VIEW_XDB t
where
o.objid = t.objid
and DATABASE = ‘<<Database Name>>
order by o.objcreated Desc, o.objmodified Desc;

Related References

 

OLTP vs Data Warehousing

OLTP Versus Data Warehousing

I’ve tried to explain the difference between OLTP systems and a Data Warehouse to my managers many times, as I’ve worked at a hospital as a Data Warehouse Manager/data analyst for many years. Why was the list that came from the operational applications different than the one that came from the Data Warehouse? Why couldn’t I just get a list of patients that were laying in the hospital right now from the Data Warehouse? So I explained, and explained again, and explained to another manager, and another. You get the picture.
In this article I will explain this very same thing to you. So you know  how to explain this to your manager. Or, if you are a manager, you might understand what your data analyst can and cannot give you.

OLTP

OLTP stands for OLine Transactional Processing. With other words: getting your data directly from the operational systems to make reports. An operational system is a system that is used for the day to day processes.
For example: When a patient checks in, his or her information gets entered into a Patient Information System. The doctor put scheduled tests, a diagnoses and a treatment plan in there as well. Doctors, nurses and other people working with patients use this system on a daily basis to enter and get detailed information on their patients.
The way the data is stored within operational systems is so the data can be used efficiently by the people working directly on the product, or with the patient in this case.

Data Warehousing

A Data Warehouse is a big database that fills itself with data from operational systems. It is used solely for reporting and analytical purposes. No one uses this data for day to day operations. The beauty of a Data Warehouse is, among others, that you can combine the data from the different operational systems. You can actually combine the number of patients in a department with the number of nurses for example. You can see how far a doctor is behind schedule and find the cause of that by looking at the patients. Does he run late with elderly patients? Is there a particular diagnoses that takes more time? Or does he just oversleep a lot? You can use this information to look at the past, see trends, so you can plan for the future.

The difference between OLTP and Data Warehousing

This is how a Data Warehouse works:

The data gets entered into the operational systems. Then the ETL processes Extract this data from these systems, Transforms the data so it will fit neatly into the Data Warehouse, and then Loads it into the Data Warehouse. After that reports are formed with a reporting tool, from the data that lies in the Data Warehouse.

This is how OLTP works:

Reports are directly made from the data inside the database of the operational systems. Some operational systems come with their own reporting tool, but you can always use a standalone reporting tool to make reports form the operational databases.

Pro’s and Con’s

Data Warehousing

Pro’s:

  • There is no strain on the operational systems during business hours
    • As you can schedule the ETL processes to run during the hours the least amount of people are using the operational system, you won’t disturb the operational processes. And when you need to run a large query, the operational systems won’t be affected, as you are working directly on the Data Warehouse database.
  • Data from different systems can be combined
    • It is possible to combine finance and productivity data for example. As the ETL process transforms the data so it can be combined.
  • Data is optimized for making queries and reports
    • You use different data in reports than you use on a day to day base. A Data Warehouse is built for this. For instance: most Data Warehouses have a separate date table where the weekday, day, month and year is saved. You can make a query to derive the weekday from a date, but that takes processing time. By using a separate table like this you’ll save time and decrease the strain on the database.
  • Data is saved longer than in the source systems
    • The source systems need to have their old records deleted when they are no longer used in the day to day operations. So they get deleted to gain performance.

Con’s:

  • You always look at the past
    • A Data Warehouse is updated once a night, or even just once a week. That means that you never have the latest data. Staying with the hospital example: you never knew how many patients are in the hospital are right now. Or what surgeon didn’t show up on time this morning.
  • You don’t have all the data
    • A Data Warehouse is built for discovering trends, showing the big picture. The little details, the ones not used in trends, get discarded during the ETL process.
  • Data isn’t the same as the data in the source systems
    • Because the data is older than those of the source systems it will always be a little different. But also because of the Transformation step in the ETL process, data will be a little different. It doesn’t mean one or the other is wrong. It’s just a different way of looking at the data. For example: the Data Warehouse at the hospital excluded all transactions that were marked as cancelled. If you try to get the same reports from both systems, and don’t exclude the cancelled transactions in the source system, you’ll get different results.

online transactional processing (OLTP)

Pro’s

  • You get real time data
    • If someone is entering a new record now, you’ll see it right away in your report. No delays.
  • You’ve got all the details
    • You have access to all the details that the employees have entered into the system. No grouping, no skipping records, just all the raw data that’s available.

Con’s

  • You are putting strain on an application during business hours.
    • When you are making a large query, you can take processing space that would otherwise be available to the people that need to work with this system for their day to day operations. And if you make an error, by for instance forgetting to put a date filter on your query, you could even bring the system down so no one can use it anymore.
  • You can’t compare the data with data from other sources.
    • Even when the systems are similar. Like an HR system and a payroll system that use each other to work. Data is always going to be different because it is granulated on a different level, or not all data is relevant for both systems.
  • You don’t have access to old data
    • To keep the applications at peak performance, old data, that’s irrelevant to day to day operations is deleted.
  • Data is optimized to suit day to day operations
    • And not for report making. This means you’ll have to get creative with your queries to get the data you need.

So what method should you use?

That all depends on what you need at that moment. If you need detailed information about things that are happening now, you should use OLTP.
If you are looking for trends, or insights on a higher level, you should use a Data Warehouse.

 Related References

Netezza / PureData – Table Describe SQL

Netezza Puredata Table Describe SQL
Netezza / Puredata Table Describe SQL

If you want to describe a PureData / Netezza table in SQL, it can be done, but Netezza doesn’t have a describe command.  Here is a quick SQL, which will give the basic structure of a table or a view.  Honestly, if you have Aginity Generating the DDL is fast and more informative, at least to me.  If you have permissions to access NZSQL you can also use the slash commands (e.g. \d).

Example Netezza Table Describe SQL

select  name as Table_name,

owner as Table_Owner,

Createdate as Table_Created_Date,

type as Table_Type,

Database as Database_Name,

schema as Database_Schema,

attnum as Field_Order,

attname as Field_Name,

format_type as Field_Type,

attnotnull as Field_Not_Null_Indicator,

attlen as Field_Length

from _v_relation_column

where

name='<<Table Name Here>>’

Order by attnum;

 

Related References

IBM Knowledge Center, PureData System for Analytics, Version 7.2.1

IBM Netezza database user documentation, Command-line options for nzsql, Internal slash options

IBM Knowledge Center, PureData System for Analytics, Version 7.2.1

IBM Netezza getting started tips, About the Netezza data warehouse appliance, Commands and queries, Basic Netezza SQL information, Commonly used nzsql internal slash commands

IBM Knowledge Center, PureData System for Analytics, Version 7.2.1

IBM Netezza database user documentation, Netezza SQL introduction, The nzsql command options, Slash options